125 research outputs found

    The contributions of diverse sense organs in the control of leg movement by a walking insect

    Get PDF
    Cruse H, Dean J, Suilmann M. The contributions of diverse sense organs in the control of leg movement by a walking insect. Journal of Comparative Physiology, A. 1984;154(5):695-705

    Pharmacokinetics of midazolam in CYP3A4- and CYP3A5-genotyped subjects

    Get PDF
    OBJECTIVE: We investigated whether differences in pharmacokinetics of midazolam, a CYP3A probe, could be demonstrated between subjects with different CYP3A4 and CYP3A5 genotypes. METHODS: Plasma concentrations of midazolam, and of total (conjugated + unconjugated) 1'OH-midazolam, and 4'OH-midazolam were measured after the oral administration of 7.5 mg or of 75 micro g of midazolam in 21 healthy subjects. RESULTS: CYP3A5*7, CYP3A4*1E, CYP3A4*2, CYP3A4*4, CYP3A4*5, CYP3A4*6, CYP3A4*8, CYP3A4*11, CYP3A4*12, CYP3A4*13, CYP3A4*17 and CYP3A4*18 alleles were not identified in the 21 subjects. CYP3A5*3, CYP3A5*6, CYP3A4*1B and CYP3A4*1F alleles were identified in 20, 1, 4 and 2 subjects, respectively. No statistically significant differences were observed for the AUC(inf) values between the different genotypes after the 75- micro g or the 7.5-mg dose. CONCLUSION: Presently, CYP3A4 and CYP3A5 genotyping methods do not sufficiently reflect the inter-individual variability of CYP3A activity

    Oral administration of a low dose of midazolam (75 microg) as an in vivo probe for CYP3A activity.

    Get PDF
    OBJECTIVE: We investigated whether the oral administration of a low dose (75 micro g) of midazolam, a CYP3A probe, can be used to measure the in vivo CYP3A activity. METHODS: Plasma concentrations of midazolam, 1'OH-midazolam and 4'OH-midazolam were measured after the oral administration of 7.5 mg and 75 micro g midazolam in 13 healthy subjects without medication, in four subjects pretreated for 2 days with ketoconazole (200 mg b.i.d.), a CYP3A inhibitor, and in four subjects pretreated for 4 days with rifampicin (450 mg q.d.), a CYP3A inducer. RESULTS: After oral administration of 75 micro g midazolam, the 30-min total (unconjugated + conjugated) 1'OH-midazolam/midazolam ratios measured in the groups without co-medication, with ketoconazole and with rifampicin were (mean+/-SD): 6.23+/-2.61, 0.79+/-0.39 and 56.1+/-12.4, respectively. No side effects were reported by the subjects taking this low dose of midazolam. Good correlations were observed between the 30-min total 1'OH-midazolam/midazolam ratio and midazolam clearance in the group without co-medication (r(2)=0.64, P<0.001) and in the three groups taken together (r(2)=0.91, P<0.0001). Good correlations were also observed between midazolam plasma levels and midazolam clearance, measured between 1.5 h and 4 h. CONCLUSION: A low oral dose of midazolam can be used to phenotype CYP3A, either by the determination of total 1'OH-midazolam/midazolam ratios at 30 min or by the determination of midazolam plasma levels between 1.5 h and 4 h after its administration

    The steroid and xenobiotic receptor (SXR), beyond xenobiotic metabolism

    Get PDF
    The steroid and xenobiotic receptor (SXR) (also known as pregnane X receptor or PXR) is a nuclear hormone receptor activated by a diverse array of endogenous hormones, dietary steroids, pharmaceutical agents, and xenobiotic compounds. SXR has an enlarged, flexible, hydrophobic ligand binding domain (LBD) which is remarkably divergent across mammalian species and SXR exhibits considerable differences in its pharmacology among mammals. The broad response profile of SXR has led to the development of "the steroid and xenobiotic sensor hypothesis". SXR has been established as a xenobiotic sensor that coordinately regulates xenobiotic clearance in the liver and intestine via induction of genes involved in drug and xenobiotic metabolism. In the past few years, research has revealed new and mostly unsuspected roles for SXR in modulating inflammation, bone homeostasis, vitamin D metabolism, lipid homeostasis, energy homeostasis and cancer. The identification of SXR as a xenobiotic sensor has provided an important tool for studying new mechanisms through which diet, chemical exposure, and environment ultimately impact health and disease. The discovery and pharmacological development of new PXR modulators might represent an interesting and innovative therapeutic approach to combat various diseases

    CYP3A4 and CYP3A5 genotyping by Pyrosequencing

    Get PDF
    BACKGROUND: Human cytochrome P450 3A enzymes, particularly CYP3A4 and CYP3A5, play an important role in drug metabolism. CYP3A expression exhibits substantial interindividual variation, much of which may result from genetic variation. This study describes Pyrosequencing assays for key SNPs in CYP3A4 (CYP3A4*1B, CYP3A4*2, and CYP3A4*3) and CYP3A5 (CYP3A5*3C and CYP3A5*6). METHODS: Genotyping of 95 healthy European and 95 healthy African volunteers was performed using Pyrosequencing. Linkage disequilibrium, haplotype inference, Hardy-Weinberg equilibrium, and tag SNPs were also determined for these samples. RESULTS: CYP3A4*1B allele frequencies were 4% in Europeans and 82% in Africans. The CYP3A4*2 allele was found in neither population sample. CYP3A4*3 had an allele frequency of 2% in Europeans and 0% in Africans. The frequency of CYP3A5*3C was 94% in Europeans and 12% in Africans. No CYP3A5*6 variants were found in the European samples, but this allele had a frequency of 16% in the African samples. Allele frequencies and haplotypes show interethnic variation, highlighting the need to analyze clinically relevant SNPs and haplotypes in a variety of ethnic groups. CONCLUSION: Pyrosequencing is a versatile technique that could improve the efficiency of SNP analysis for pharmacogenomic research with the ultimate goal of pre-screening patients for individual therapy selection

    The neurobiology of Etruscan shrew active touch

    Get PDF
    The Etruscan shrew, Suncus etruscus, is not only the smallest terrestrial mammal, but also one of the fastest and most tactile hunters described to date. The shrew's skeletal muscle consists entirely of fast-twitch types and lacks slow fibres. Etruscan shrews detect, overwhelm, and kill insect prey in large numbers in darkness. The cricket prey is exquisitely mechanosensitive and fast-moving, and is as big as the shrew itself. Experiments with prey replica show that shape cues are both necessary and sufficient for evoking attacks. Shrew attacks are whisker guided by motion- and size-invariant Gestalt-like prey representations. Shrews often attack their prey prior to any signs of evasive manoeuvres. Shrews whisk at frequencies of approximately 14 Hz and can react with latencies as short as 25–30 ms to prey movement. The speed of attacks suggests that shrews identify and classify prey with a single touch. Large parts of the shrew's brain respond to vibrissal touch, which is represented in at least four cortical areas comprising collectively about a third of the cortical volume. Etruscan shrews can enter a torpid state and reduce their body temperature; we observed that cortical response latencies become two to three times longer when body temperature drops from 36°C to 24°C, suggesting that endothermy contributes to the animal's high-speed sensorimotor performance. We argue that small size, high-speed behaviour and extreme dependence on touch are not coincidental, but reflect an evolutionary strategy, in which the metabolic costs of small body size are outweighed by the advantages of being a short-range high-speed touch and kill predator

    Pregnane X Receptor and Yin Yang 1 Contribute to the Differential Tissue Expression and Induction of CYP3A5 and CYP3A4

    Get PDF
    The hepato-intestinal induction of the detoxifying enzymes CYP3A4 and CYP3A5 by the xenosensing pregnane X receptor (PXR) constitutes a key adaptive response to oral drugs and dietary xenobiotics. In contrast to CYP3A4, CYP3A5 is additionally expressed in several, mostly steroidogenic organs, which creates potential for induction-driven disturbances of the steroid homeostasis. Using cell lines and mice transgenic for a CYP3A5 promoter we demonstrate that the CYP3A5 expression in these organs is non-inducible and independent from PXR. Instead, it is enabled by the loss of a suppressing yin yang 1 (YY1)-binding site from the CYP3A5 promoter which occurred in haplorrhine primates. This YY1 site is conserved in CYP3A4, but its inhibitory effect can be offset by PXR acting on response elements such as XREM. Taken together, the loss of YY1 binding site from promoters of the CYP3A5 gene lineage during primate evolution may have enabled the utilization of CYP3A5 both in the adaptive hepato-intestinal response to xenobiotics and as a constitutively expressed gene in other organs. Our results thus constitute a first description of uncoupling induction from constitutive expression for a major detoxifying enzyme. They also suggest an explanation for the considerable tissue expression differences between CYP3A5 and CYP3A4

    Genetic polymorphisms in MDR1, CYP3A4 and CYP3A5 genes in a Ghanaian population: a plausible explanation for altered metabolism of ivermectin in humans?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ivermectin, a substrate of multidrug resistance (MDR1) gene and cytochrome P450 (CYP) 3A4, has been used successfully in the treatment of onchocerciasis in Ghana. However, there have been reports of suboptimal response in some patients after repeated treatment. Polymorphisms in host MDR1 and CYP3A genes may explain the observed suboptimal response to ivermectin. We genotyped relevant functional polymorphisms of MDR1 and CYP3A in a random sample of healthy Ghanaians and compared the data with that of ivermectin-treated patients with a view to exploring the relationship between suboptimal response to ivermectin and MDR1 and CYP3A allelic frequencies.</p> <p>Methods</p> <p>Using PCR-RFLP, relevant polymorphic alleles of MDR1 and CYP3A4 genes were analysed in 204 randomly selected individuals and in 42 ivermectin treated patients.</p> <p>Results</p> <p>We recorded significantly higher MDR1 (3435T) variant allele frequency in suboptimal responders (21%) than in patients who responded to treatment (12%) or the random population sample (11%). <it>CYP3A4*1B</it>, <it>CYP3A5*3 </it>and <it>CYP3A5*6 </it>alleles were detected at varied frequencies for the sampled Ghanaian population, responders and suboptimal responders to ivermectin. <it>CYP3A5*1/CYP3A5*1 </it>and <it>CYP3A5*1/CYP3A5*3 </it>genotypes were also found to be significantly different for responders and suboptimal responders. Haplotype (*1/*1/*3/*1) was determined to be significantly different between responders and suboptimal responders indicating a possible role of these haplotypes in treatment response with ivermectin.</p> <p>Conclusion</p> <p>A profile of pharmacogenetically relevant variants for MDR1, CYP3A4 and CYP3A5 genes has been generated for a random population of 204 Ghanaians to address the scarcity of data within indigenous African populations. In 42 patients treated with ivermectin, difference in MDR1 variant allele frequency was observed between suboptimal responders and responders.</p

    Active Nuclear Receptors Exhibit Highly Correlated AF-2 Domain Motions

    Get PDF
    Nuclear receptor ligand binding domains (LBDs) convert ligand binding events into changes in gene expression by recruiting transcriptional coregulators to a conserved activation function-2 (AF-2) surface. While most nuclear receptor LBDs form homo- or heterodimers, the human nuclear receptor pregnane X receptor (PXR) forms a unique and essential homodimer and is proposed to assemble into a functional heterotetramer with the retinoid X receptor (RXR). How the homodimer interface, which is located 30 Å from the AF-2, would affect function at this critical surface has remained unclear. By using 20- to 30-ns molecular dynamics simulations on PXR in various oligomerization states, we observed a remarkably high degree of correlated motion in the PXR–RXR heterotetramer, most notably in the four helices that create the AF-2 domain. The function of such correlation may be to create “active-capable” receptor complexes that are ready to bind to transcriptional coactivators. Indeed, we found in additional simulations that active-capable receptor complexes involving other orphan or steroid nuclear receptors also exhibit highly correlated AF-2 domain motions. We further propose a mechanism for the transmission of long-range motions through the nuclear receptor LBD to the AF-2 surface. Taken together, our findings indicate that long-range motions within the LBD scaffold are critical to nuclear receptor function by promoting a mobile AF-2 state ready to bind coactivators
    corecore